Механизмы окислительного и субстратного фосфорилирования
Примером субстратного фосфорелирования можно считать второй этап гликолиза. Фермент дегидрогиназа ФГА образует с 3-ФГА фермент-субстратный комплекс, с которым происходит окисление субстарта и передача электронов и протонов на НАД. В ходе окисления ФГА до ФГК в фермент-субстратном комплексе возникает высокоэнергетическая связь) т. е. связь с очень высокой свободной энергией гидролиза). Далее осуществляется фосфоролиз этой связи, в результате чего SН-фермент отщепляется от субстрата, а к остатку карбоксильной группы субстрата присоединяется неорганический фосфат, причем связь сохраняет значительный запас энергии, освободившийся в результате окисления 3-ФГА. Высокоэнергетическая фосфатная группа передается на АДР и образуется АТФ. Так каа в данном случае высокоэнергетическая ковалентная связь фосфата формируется прямо на окисляемом субстрате, такой процесс-субстратное фосфорелирование.
Процесс фосфорелирования АДР с образованием АТФ, сопряженный с переносом электронов по транспортной цепи митохондрий получил название окислительного. По поводу механизма окислительного фосфорелирования существует 3 теории:химическая, механохимическая и хемиосмотическая.
Согласно химической гипотезы в митохондриях имеются интермедиаторы белковой природы образующие комплексы с соответствующими восстановленными переносчиками. В результате окисления переносчика в комплексе возникает высокоэнергетическая связь. При распаде комплекса к интермедиатору с высокоэнергетической связью присоединяется неорганический фосфат, который затем передается на АДР.
Способность митохондриальных мембран к конформационным изменениям и связь этих изменений со степенью энергизаци митохондрий послужила основой для создания механохимических гипотез образования АТФ в ходе окислительного фосфорелирования. Согласно этим гипотезам энергия, высвобождающаяся в процессе переноса электронов непосредственно использующихся для перевода белков внутренней мембраны митохондрий в новое, богатое энергией конформационное состояние, приводящее к образованию АТФ. Таким образом, согласно механохимическим гипотезам, энергия окисления, превращается сначало в механическую энергию, а затем в энергию АТФ.
Хемиосмотическая теория сопряжения. Митчел высказал предположение, что поток электронов через систему молекул переносчиков сопровождается трансортом ионов Н через внутреннюю мембрану митохондрий. В результате на мембране создается электроно-химический потенциал ионов Н, включающий химический или осмотический градиент и электрохимический градиент. Согласно хемиосмотической теории электрохимический трансмембранный потенциал ионов Н и является источником энергии для синтеза АТФ за счет обращения транспорта ионов Н через протонный канал мембранной Н-АТФазы.