Как ведут себя макросистемы вдали от равновесия? Поясните принцип локального равновесия
Известно, что для небольших отклонений от равновесия соблюдается феноменологическое соотношение между потоками и силами. Пусть α = k для тепловых потоков, тогда
Jk = LkjFj
Если учесть соотношение взаимности Онзагера Ljk = Lkj, то формула
σ = LjkFjFk > 0
определяет устойчивость систем данного вида неравновесности.
При этом необходимо помнить, что в связи с неравновесностью какие-то силы поддерживают потоки постоянными, а какие-то сводят их к нулю.
В термодинамике это, например, некая утечка тепла при отсутствии потока вещества, в экономике — небольшая постоянная инфляция при стабильных ценах на определяющие товары.
При этом стационарность, т. е. постоянство утечки какого-либо вещества или энергии, обеспечивает минимум производства энтропии.
Однако часто эти линейные феноменологические соотношения не выполняются и микрообъемы могут вести себя колебательно и, далее, хаотически.
Но начнем со стационарной неравновесности, при которой (в термодинамике) потоки энергии и вещества Jk не обращаются в нуль. Отсюда первая вариация энтропии dS не обращается в нуль, а значит существует вторая d2S и со своими знаками.
Пригожиным предложено в таких неравновесных системах пользоваться критерием Ляпунова, который говорит о том, что если возмущенное движение отличается от невозмущенного на некоторую малую положительную величину и она при этом уменьшается или не выходит за рамки наперед заданной величины, то это движение устойчиво. Пригожин предложил в качестве «функционала» Ляпунова использовать d2S, или «избыточное производство энтропии»:
= > 0
Если неравенство выполняется, то такое стационарное состояние устойчиво. Однако и здесь есть ограничения. Они касаются флуктуаций. Это могут быть неоднородности, дефекты или любые случайные факторы. В экономике это могут быть меняющиеся условия в бизнесе, частая смена законодательства и пр. При наличии значительных флуктуаций в неравновесных системах возможно непредсказуемое поведение («дуалистическое»). Часто поведение таких систем при определенных условиях становится упорядоченным в пространстве и времени. Это свойство неравновесных систем переходить в упорядоченное состояние через флуктуации или «порядок через флуктуации» И. Пригожин определил как фундаментальное.
В термодинамике исследован ряд устойчивых организованных структур: ячейки Бенара, слои Жаботинского. Они названы Пригожиным диссипативными. Макросистемные модели такого типа могут быть использованы в экономике переходного периода при больших необратимых потоках. Например, при разработке стратегий безопасности, антикризисных программ и в бурно развивающихся регионах и отраслях.
Главными являются вопросы, как поддерживать систему вдали от равновесия и при каких флуктуациях она переходит в новые состояния.
В общем виде движение или развитие системы можно записать как
= Zk(Xi, λ),
где Хk — параметры состояния системы; k = 1, 2, ., n; λ — параметр, позволяющий поддерживать систему вдали от равновесия. Множественность решения этого уравнения является одним из условий, приводящим к неустойчивости, диссипативным структурам, бифуркации.
Таким образом, по Пригожину, можно выделить три варианта неравновесных моделей: локально равновесные, стационарно неравновесные и флуктуационно-диссипативные.
1 2