Изучение мутационного процесса
Многие годы генетики считали, что химический мутаген был открыт в середине 30-х годов. Но это оказалось неправильным. Еще в 1928 г. в той же лаборатории Г. А. Надсона где было впервые установлено мутагенное действие излучения, был открыт и химический мутагенез. Другой ученик Г. А. Надсона Максим Николаевич Мейсель, ныне член-корреспондент Академии наук СССР, доказал, что пары хлороформа вызывают мутации у дрожжей. Эту работу он продолжал в течение почти десяти лет. Он изучил сотни поколений измененных особей и показал, что, изменения стойко передаются потомкам, кроме того, он изучил несколько химических веществ, изменяющих наследственность. Эти опыты не были своевременно признаны, потому что многие ученые в то время не верили в существование у микробов таких же наследственных молекул, какие имеются и у высших организмов Поэтому опытам на микроорганизмах не очень-то доверяли.
Но все-таки наиболее планомерные и результативные исследования начались после того, как была установлена структура вещества наследственности — дезоксирибонуклеиновой кислоты. Как только выяснили, какие химические вещества слагают хромосомы, стало возможным планировать так эксперименты, чтобы целенаправленно искать все новые и новые вещества, изменяющие наследственность. Теперь известно, что многие вещества, способные реагировать с радикалами в ДНК: (отрывать от них отдельные атомы или группы их или, напротив, передавать им свои части), могут изменять генетический код. Сегодня открыто так много различного рода химических и радиационных мутагенов, что даже перечислить их довольно трудно. Гидроксиламин, гидразины, азотистая кислота, различного рода акридиновые красители, аналоги азотистых оснований, уретаны, изменения в кислотности среды, повышение температуры, практически все виды лучистой энергии, многие ядовитые и отравляющие вещества (азотистый и серный имприт другие алкилирующие вещества) вызывают мутации.
Мутации можно вызвать в клетках покоящихся и в клетках делящихся. Есть мутагены, которые проявляют свою активность вне зависимости от того, делится клетка или нет (например, многие алкилирующие агенты, т. е. вещества, передающие алкильный радикал СН3, С2Н5 и др. атомам в ДНК, гидроксиламин и др.), но есть и такие, которые могут изменять наследственную запись только в момент деления клеток, когда происходит удвоение молекул ДНК (например, аналоги азотистых оснований).
Изучение химии взаимодействия мутагенов с ДНК выявило еще одно важное правило. Оказалось, что большинство мутагенов взаимодействует со строго определенными составными частями в ДНК. Вспомним, что ДНК составлена из двух сахаро-фосфатных цепей, к которым присоединены по их длине четыре типа азотистых оснований — аденин, тимин, гуанин и цитозин. Оказалось, что некоторые мутагены взаимодействуют только с цитозином, а другие только с аденином. Это позволяет использовать в некоторых случаях вполне определенные вещества, чтобы изменять вполне определенные части в ДНК.
За последние несколько лет стала вырисовываться еще одна важная закономерность. Bo время жизни клеток ее генетическая информация постоянно участвует в управлении синтезами внутри клеток, ведь именно в ДНК записана программа для синтеза белков в клетках. Когда эта наследственная программа переписывается особыми ферментами с молекул ДНК на другие молекулы, может также происходить индукция ошибок в ДНК. Мутации появляются и в момент размножения, молекул или во время обмена генетической информацией между хромосомами. Постепенно все яснее и яснее становится общее правило, что не только за счет искусственных и часто необычных воздействий на организм (ядами или излучением) происходят изменения в наследственности живых организмов на земле. И в обычных условиях, за счет нормально протекающих в организмах ферментативных процессов происходит накопление ошибок в ДНК, хотя, конечно, частота этого процесса много меньше, чем при воздействии сильно повреждающими агентами.